Sunday, August 2, 2015

GATE 2016 Chemical Engineering (CH) Syllabus

GATE 2016 General Aptitude Syllabus - Common for ALL Papers

Section 1: Engineering Mathematics

Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and eigenvectors.
Calculus: Functions of single variable, Limit, continuity and differentiability, Taylor series, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.
Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.
Complex variables: Complex number, polar form of complex number, triangle inequality.
Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions, Linear regression analysis.
Numerical Methods: Numerical solutions of linear and non-linear algebraic equations. Integration by trapezoidal and Simpson’s rule. Single and multi-step methods for numerical solution of differential equations.

Also Check: GATE 2016 Pattern of Question Paper and Marking Scheme

Section 2: Process Calculations and Thermodynamics

Steady and unsteady state mass and energy balances including multiphase, multicomponent, reacting and non-reacting systems. Use of tie components; recycle, bypass and purge calculations; Gibb’s phase rule and degree of freedom analysis. First and Second laws of thermodynamics. Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances: Equation of State and residual properties, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibrium.

Section 3: Fluid Mechanics and Mechanical Operations

Fluid statics, Newtonian and non-Newtonian fluids, shell-balances including differential form of Bernoulli equation and energy balance, Macroscopic friction factors, dimensional analysis and similitude, flow through pipeline systems, flow meters, pumps and compressors, elementary boundary layer theory, flow past immersed bodies including packed and fluidized beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop. Particle size and shape, particle size distribution, size reduction and classification of solid particles; free and hindered settling; centrifuge and cyclones; thickening and classification, filtration, agitation and mixing; conveying of solids.

Section 4: Heat Transfer

Steady and unsteady heat conduction, convection and radiation, thermal boundary layer and heat transfer coefficients, boiling, condensation and evaporation; types of heat exchangers and evaporators and their process calculations. Design of double pipe, shell and tube heat exchangers, and single and multiple effect evaporators.

Section 5: Mass Transfer

Fick’s laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; momentum, heat and mass transfer analogies; stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification and adsorption.

Section 6: Chemical Reaction Engineering

Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis.

Section 7: Instrumentation and Process Control

Measurement of process variables; sensors, transducers and their dynamics, process modeling and linearization, transfer functions and dynamic responses of various systems, systems with inverse response, process reaction curve, controller modes (P, PI, and PID); control valves; analysis of closed loop systems including stability, frequency response, controller tuning, cascade and feed forward control.

Section 8: Plant Design and Economics

Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of return, payback period, discounted cash flow, optimization in process design and sizing of chemical engineering equipments such as compressors, heat exchangers, multistage contactors.

Section 9: Chemical Technology

Inorganic chemical industries (sulfuric acid, phosphoric acid, chlor-alkali industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; polymerization industries (polyethylene, polypropylene, PVC and polyester synthetic fibers).

Saturday, August 1, 2015

GATE 2016 Production and Industrial Engineering (PI) Syllabus

GATE 2016 General Aptitude Syllabus - Common for ALL Papers

Section 1: Engineering Mathematics

Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and eigen vectors.
Calculus: Functions of single variable, Limit, continuity and differentiability, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.
Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.
Complex variables: Analytic functions, Cauchy’s integral theorem, Taylor series. Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions.
Numerical Methods: Numerical solutions of linear and non-linear algebraic equations Integration by trapezoidal and Simpson’s rule, single and multi-step methods for differential equations.

Also Check: GATE 2016 Pattern of Question Paper and Marking Scheme

Section 2: General Engineering

Engineering Materials: Structure and properties correlation;engineering materials (metals, ceramics, polymers and composites) – properties and applications; stressstrain behavior of metals and alloys;iron-carbon phase diagram, heat treatment of metals and alloys, its influence on mechanical properties.
Applied Mechanics: Engineering mechanics – equivalent force systems, free body concepts, equations of equilibrium; trusses; strength of materials – stress, strain and their relationship; failure theories, Mohr’s circle(stress), deflection of beams, bending and shear stress, Euler’s theory of columns.
Theory of Machines and Design: Analysis of planar mechanisms, cams and followers; governors and fly wheels; design of bolted, riveted and welded joints; interference/shrink fit joints; design of shafts, keys, spur gears, belt drives, brakes and clutches; pressure vessels.
Thermal and Fluids Engineering: Fluid mechanics – fluid statics, Bernoulli’s equation, flow through pipes, equations of continuity and momentum, capillary action, contact angle and wetting; thermodynamics – zeroth, first and second law of thermodynamics, thermodynamic system and processes, calculation of work and heat for systems and control volumes; air standard cycles; heat transfer – basicapplicationsof conduction, convection and radiation.

Section 3: Manufacturing Processes I

Casting: types of casting processes and applications; patterns – types and materials; allowances; moulds and cores – materials, making, and testing; casting techniques of cast iron, steels and nonferrous metals and alloys; analysis ofsolidification andmicrostructure development; design of gating and riser; origin of defects.
Metal Forming: Stress-strain relations in elastic and plastic deformation; concept of flow stress; hot and cold working – forging, rolling, extrusion and wire drawing; sheet metal working processes – blanking, bending and deep drawing; ideal work and slab analysis;origin of metal workingdefects.
Joining of materials: Principles of fusion welding processes(manual metal arc, MIG, TIG, plasma arc, submerged arc welding processes)–different heat sources (flame, arc, resistive, laser, electron beam), and heat transfer and associated losses, flux application, feeding of filler rod; Principles of solid state welding processes (friction, explosive welding, ultrasonic welding processes); Principles of adhesive, brazing and soldering processes; Origins of welding defects.
Powder processing: Production of metal/ceramic powders, compaction and sintering of metals and ceramic powders.
Polymers and Composites: Plastic processing – injection, compression and blow molding, extrusion, calendaring and thermoforming; molding of composites.

Section 4: Manufacturing Processes II

Machine Tools and Machining: Basic machine tools like centre lathe, milling machine, and drilling machine – construction and kinematics; machining processes - turning, taper turning, thread cutting, drilling, boring, milling, gear cutting, thread production, grinding; geometry of single point cutting tools, chip formation, cutting forces, specific cutting energy and power requirements, Merchant’s analysis; basis ofselection of machining parameters; tool materials, tool wear and tool life, economics of machining, thermal aspects of machining, cutting fluids, machinability; Jigs and fixtures – principles, applications, and design
Non-traditional Manufacturing: Principles, applications, effect of process parameters on MRR and product quality of non-traditional machining processes – USM, AJM, WJM, AWJM, EDM and Wire cut EDM, LBM, EBM, PAM, CHM, ECM.
Computer Integrated Manufacturing: Basic concepts of CAD – geometric modeling, CAM – CNC and robotics – configurations, drives and controls, Group Technology and its applications – CAPP, cellular manufacturing and FMS.

Section 5: Qualityand Reliability

Metrology and Inspection: Limits, fits, and tolerances, gauge design, interchangeability, selective assembly; linear, angular, and form measurements(straightness, squareness, flatness, roundness, and cylindricity) by mechanical and optical methods; inspection of screw threads and gears; surface finish measurement by contact and non-contact methods;tolerance analysis in manufacturing and assembly.
Quality management: Quality – concept and costs; quality assurance; statistical quality control, acceptance sampling, zero defects, six sigma; total quality management; ISO 9000.
Reliability and Maintenance: Reliability, availability and maintainability; distribution of failure and repair times; determination of MTBF and MTTR, reliability models; determination of system reliability; preventive maintenance and replacement.

Section 6: Industrial Engineering

Product Design and Development: Principles of good product design, tolerance design; quality and cost considerations; product life cycle; standardization, simplification, diversification, value engineering and analysis, concurrent engineering;comparison of production alternatives.
Work System Design: Taylor’s scientific management, Gilbreths’s contributions; productivity – concepts and measurements; methodstudy, micro-motion study, principles of motion economy; work measurement –time study, work sampling, standard data, PMTS; ergonomics; job evaluation, merit rating, incentive schemes, and wage administration.
Facility Design: Facility location factors and evaluation of alternate locations; types of plant layout and their evaluation; computer aided layout design techniques; assembly line balancing; materials handling systems.

Section 7: Operations research and Operations management

Operation Research: Linear programming – problem formulation, simplex method, duality and sensitivity analysis; transportation and assignment models; network flow models, constrained optimization and Lagrange multipliers; Markovian queuing models; dynamic programming; simulation – manufacturing applications.
Engineering Economy and Costing: Elementary cost accounting and methods of depreciation; break-even analysis, techniques for evaluation of capital investments, financial statements, time-cost trade-off, resource leveling.
Production control: Forecasting techniques – causal and time series models, moving average, exponential smoothing, trend and seasonality; aggregate production planning; master production scheduling; MRP and MRP-II; routing, scheduling and priority dispatching; Push and pull production systems, concept of JIT manufacturing system; Logistics, distribution, and supply chain management; Inventory – functions, costs, classifications, deterministicinventory models, quantity discount; perpetual and periodic inventory control systems.
Project management – PERT and CPM.

GATE 2016 Architecture and Planning (AR) Syllabus

GATE 2016 General Aptitude Syllabus - Common for ALL Papers

Section 1: Architecture and Design

Visual composition in 2D and 3D; Principles of Art and Architecture; Organization of space; Architectural Graphics; Computer Graphics– concepts of CAD, BIM, 3D modeling and Architectural rendition; Programming languages and automation. Anthropometrics; Planning and design considerations for different building types; Site planning; Circulation- horizontal and vertical; Barrier free design; Space Standards; Building Codes; National Building Code. Elements, construction, architectural styles and examples of different periods of Indian and Western History of Architecture; Oriental, Vernacular and Traditional architecture; Architectural developments since Industrial Revolution; Influence of modern art on architecture; Art nouveau, Eclecticism, International styles, Post Modernism, Deconstruction in architecture; Recent trends in Contemporary Architecture; Works of renowned national and international architects.

Also Check: GATE 2016 Pattern of Question Paper and Marking Scheme

Section 2: Building Materials, Construction and Management

Behavioral characteristics and applications of different building materials viz. mud, timber, bamboo, brick, concrete, steel, glass, FRP, AAC, different polymers, composites. Building construction techniques, methods and details; Building systems and prefabrication of building elements; Principles of Modular Coordination; Estimation, specification, valuation, professional practice; Construction planning and equipments; Project management techniques e.g. PERT, CPM etc.

Section 3: Building and Structures

Principles of strength of materials; Design of structural elements in wood, steel and RCC; Elastic and Limit State design; Structural systems in RCC and Steel; Form and Structure; Principles of Pre-stressing; High Rise and Long Span structures, gravity and lateral load resisting systems; Principles and design of disaster resistant structures.

Section 4: Environmental Planning and Design

Ecosystem- natural and man-made ecosystem; Ecological principles; Concepts of Environmental Impact Analysis; Environmental considerations in planning and design; Thermal comfort, ventilation and air movement; Principles of lighting and illumination; Climate responsive design; Solar architecture; Principles of architectural acoustics; Green Building- Concepts and Rating; ECBC; Building Performance Simulation and Evaluation; Environmental pollution- types, causes, controls and abatement strategies.

Section 5: Urban Design

Concepts and theories of urban design; Public Perception; Townscape; Public Realm; Urban design interventions for sustainable development and transportation; Historical and modern examples of urban design; Public spaces, character, spatial qualities and Sense of Place; Elements of urban built environment – urban form, spaces, structure, pattern, fabric, texture, grain etc; Principles, tools and techniques of urban design; Urban renewal and conservation; Site planning; Landscape design; Development controls – FAR, densities and building byelaws.

Section 6: Urban Planning and Housing

Planning process; Types of plans - Master Plan, City Development Plan, Structure Plan, Zonal Plan, Action Area Plan, Town Planning Scheme, Regional Plan; Salient concepts, theories and principles of urban planning; Sustainable urban development; Emerging concepts of cities - Eco-City, Smart City, Transit Oriented Development (TOD), SEZ, SRZ etc. Housing; Concepts, principles and examples of neighbourhood; Housing typologies; Slums; Affordable Housing; Housing for special areas and needs; Residential densities; Standards for housing and community facilities; National Housing Policies, Programs and Schemes.

Section 7: Planning Techniques and Management

Tools and techniques of Surveys – Physical, Topographical, Landuse and Socioeconomic Surveys; Methods of non-spatial and spatial data analysis; Graphic presentation of spatial data; Application of G.I.S and Remote Sensing techniques in urban and regional planning; Decision support system and Land Information System. Urban Economics; Law of demand and supply of land and its use in planning; Social, Economical and environmental cost benefit analysis; Techniques of financial appraisal; Management of Infrastructure Projects; Development guidelines such as URDPFI; Planning Legislation and implementation – Land Acquisition Act, PPP etc.; Local self-governance.

Section 8: Services, Infrastructure and Transportation

Building Services: Water supply; Sewerage and drainage systems; Sanitary fittings and fixtures; Plumbing systems; Principles of internal and external drainage system; Principles of electrification of buildings; Intelligent Buildings; Elevators and Escalators - standards and uses; Air-Conditioning systems; Firefighting Systems; Building Safety and Security systems. Urban Infrastructure – Transportation, Water Supply, Sewerage, Drainage, Solid Waste Management, Electricity and Communications. Process and Principles of Transportation Planning and Traffic Engineering; Road capacity; Traffic survey methods; Traffic flow characteristics; Traffic analyses and design considerations; Travel demand forecasting; Land-use – transportation - urban form inter-relationships; Design of roads, intersections, grade separators and parking areas; Hierarchy of roads and level of service; Traffic and transport management and control in urban areas,; Mass transportation planning; Paratransits and other modes of transportation, Pedestrian and slow moving traffic planning; Intelligent Transportation Systems. Principles of water supply and sanitation systems; water treatment; Water supply and distribution system; Water harvesting systems; Principles, Planning and Design of storm water drainage system; Sewage disposal methods; Methods of solid waste management - collection, transportation and disposal; Recycling and Reuse of solid waste; Power Supply and Communication Systems, network, design and guidelines.

GATE 2016 Physics (PH) Syllabus

GATE 2016 General Aptitude Syllabus - Common for ALL Papers

Section 1: Mathematical Physics

Linear vector space: basis, orthogonality and completeness; matrices; vector calculus; linear differential equations; elements of complex analysis: CauchyRiemann conditions, Cauchy’s theorems, singularities, residue theorem and applications; Laplace transforms, Fourier analysis; elementary ideas about tensors: covariant and contravariant tensor, Levi-Civita and Christoffel symbols.

Also Check: GATE 2016 Pattern of Question Paper and Marking Scheme

Section 2: Classical Mechanics

D’Alembert’s principle, cyclic coordinates, variational principle, Lagrange’s equation of motion, central force and scattering problems, rigid body motion; small oscillations, Hamilton’s formalisms; Poisson bracket; special theory of relativity: Lorentz transformations, relativistic kinematics, mass‐energy equivalence.

Section 3: Electromagnetic Theory

Solutions of electrostatic and magnetostatic problems including boundary value problems; dielectrics and conductors; Maxwell’s equations; scalar and vector potentials; Coulomb and Lorentz gauges; Electromagnetic waves and their reflection, refraction, interference, diffraction and polarization; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.

Section 4: Quantum Mechanics

Postulates of quantum mechanics; uncertainty principle; Schrodinger equation; one-, two- and three-dimensional potential problems; particle in a box, transmission through one dimensional potential barriers, harmonic oscillator, hydrogen atom; linear vectors and operators in Hilbert space; angular momentum and spin; addition of angular momenta; time independent perturbation theory; elementary scattering theory.

Section 5: Thermodynamics and Statistical Physics

Laws of thermodynamics; macrostates and microstates; phase space; ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck’s distribution law; Bose‐Einstein condensation; first and second order phase transitions, phase equilibria, critical point.

Section 6: Atomic and Molecular Physics

Spectra of one‐ and many‐electron atoms; LS and jj coupling; hyperfine structure; Zeeman and Stark effects; electric dipole transitions and selection rules; rotational and vibrational spectra of diatomic molecules; electronic transition in diatomic molecules, Franck‐Condon principle; Raman effect; NMR, ESR, X-ray spectra; lasers: Einstein coefficients, population inversion, two and three level systems.

Section 7: Solid State Physics & Electronics

Elements of crystallography; diffraction methods for structure determination; bonding in solids; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids: nearly free electron and tight binding models; metals, semiconductors and insulators; conductivity, mobility and effective mass; optical, dielectric and magnetic properties of solids; elements of superconductivity: Type-I and Type II superconductors, Meissner effect, London equation. Semiconductor devices: diodes, Bipolar Junction Transistors, Field Effect Transistors; operational amplifiers: negative feedback circuits, active filters and oscillators; regulated power supplies; basic digital logic circuits, sequential circuits, flip‐flops, counters, registers, A/D and D/A conversion.

Section 8: Nuclear and Particle Physics

Nuclear radii and charge distributions, nuclear binding energy, Electric and magnetic moments; nuclear models, liquid drop model: semi‐empirical mass formula, Fermi gas model of nucleus, nuclear shell model; nuclear force and two nucleon problem; alpha decay, beta‐decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions, conservation laws; fission and fusion; particle accelerators and detectors; elementary particles, photons, baryons, mesons and leptons; quark model.

GATE 2016 Agricultural Engineering (AG) Syllabus

GATE 2016 General Aptitude Syllabus - Common for ALL Papers

Section 1: Engineering Mathematics

Linear Algebra: Matrices and determinants, systems of linear equations, Eigen values and eigen vectors.
Calculus: Limit, continuity and differentiability; partial derivatives; maxima and minima; sequences and series; tests for convergence; Fourier series, Taylor series. Vector Calculus: Gradient; divergence and curl; line; surface and volume integrals; Stokes, Gauss and Green’s theorems.
Differential Equations: Linear and non-linear first order Ordinary Differential Equations (ODE); Higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms; Partial Differential Equations - Laplace, heat and wave equations.
Probability and Statistics: Mean, median, mode and standard deviation; random variables; Poisson, normal and binomial distributions; correlation and regression analysis; tests of significance, analysis of variance (ANOVA).
Numerical Methods: Solutions of linear and non-linear algebraic equations; numerical integration - trapezoidal and Simpson’s rule; numerical solutions of ODE.

Also Check: GATE 2016 Pattern of Question Paper and Marking Scheme

Section 2: Farm Machinery

Machine Design: Design and selection of machine elements – gears, pulleys, chains and sprockets and belts; overload safety devices used in farm machinery; measurement of force, torque, speed, displacement and acceleration on machine elements.
Farm Machinery: Soil tillage; forces acting on a tillage tool; hitch systems and hitching of tillage implements; functional requirements, principles of working, construction and operation of manual, animal and power operated equipment for tillage, sowing, planting, fertilizer application, inter-cultivation, spraying, mowing, chaff cutting, harvesting, threshing and transport; testing of agricultural machinery and equipment; calculation of performance parameters - field capacity, efficiency, application rate and losses; cost analysis of implements and tractors.

Section 3: Farm Power

Sources of Power: Sources of power on the farm - human, animal, mechanical, electrical, wind, solar and biomass; bio-fuels.
Farm Power: Thermodynamic principles of I.C. engines; I.C. engine cycles; engine components; fuels and combustion; lubricants and their properties; I.C. engine systems – fuel, cooling, lubrication, ignition, electrical, intake and exhaust; selection, operation, maintenance and repair of I.C. engines; power efficiencies and measurement; calculation of power, torque, fuel consumption, heat load and power losses.
Tractors and Powertillers: Type, selection, maintenance and repair of tractors and powertillers; tractor clutches and brakes; power transmission systems – gear trains, differential, final drives and power take-off; mechanics of tractor chassis; traction theory; three point hitches- free link and restrained link operations; mechanical steering and hydraulic control systems used in tractors; tractor tests and performance. Human engineering and safety in design of tractor and agricultural implements.

Section 4: Soil and Water Conservation Engineering

Fluid Mechanics: Ideal and real fluids, properties of fluids; hydrostatic pressure and its measurement; hydrostatic forces on plane and curved surface; continuity equation; Bernoulli’s theorem; laminar and turbulent flow in pipes, Darcy- Weisbach and Hazen-Williams equations, Moody’s diagram; flow through orifices and notches; flow in open channels.
Soil Mechanics: Engineering properties of soils; fundamental definitions and relationships; index properties of soils; permeability and seepage analysis; shear strength, Mohr’s circle of stress, active and passive earth pressures; stability of slopes.
Hydrology: Hydrological cycle and components; meteorological parameters, their measurement and analysis of precipitation data; runoff estimation; hydrograph analysis, unit hydrograph theory and application; stream flow measurement; flood routing, hydrological reservoir and channel routing.
Surveying and Leveling: Measurement of distance and area; instruments for surveying and leveling; chain surveying, methods of traversing; measurement of angles and bearings, plane table surveying; types of leveling; theodolite traversing; contouring; computation of areas and volume.
Soil and Water Erosion: Mechanics of soil erosion, soil erosion types, wind and water erosion, factors affecting erosion; soil loss estimation; biological and engineering measures to control erosion; terraces and bunds; vegetative waterways; gully control structures, drop, drop inlet and chute spillways; earthen dams.
Watershed Management: Watershed characterization; land use capability classification;rainwater harvesting structures,check dams and farm ponds.

Section 5: Irrigation and Drainage Engineering

Soil-Water-Plant Relationship: Water requirement of crops; consumptive use and evapotranspiration; measurement of infiltration, soil moisture and irrigation water infiltration.
Irrigation Water Conveyance and Application Methods: Design of irrigation channels and underground pipelines; irrigation scheduling; surface, sprinkler and micro irrigation methods, design and evaluation of irrigation methods; irrigation efficiencies.
Agricultural Drainage: Drainage coefficient; planning, design and layout of surface and sub-surface drainage systems; leaching requirement and salinity control; irrigation and drainage water quality and reuse. Groundwater Hydrology: Groundwater occurrence; Darcy’s Law, steady flow in confined and unconfined aquifers, evaluation of aquifer properties; groundwater recharge.
Wells and Pumps: Types of wells, steady flow through wells; classification of pumps; pump characteristics; pump selection and installation.

Section 6: Agricultural Processing Engineering

Drying: Psychrometry – properties of air-vapors mixture; concentration and drying of liquid foods – evaporators, tray, drum and spray dryers; hydrothermal treatment; drying and milling of cereals, pulses and oilseeds.
Size Reduction and Conveying: Mechanics and energy requirement in size reduction of granular solids; particle size analysis for comminuted solids; size separation by screening; fluidization of granular solids-pneumatic, bucket, screw and belt conveying; cleaning and grading; effectiveness of grain cleaners; centrifugal separation of solids, liquids and gases.
Processing and By-product Utilization: Processing of seeds, spices, fruits and vegetables; By-product utilization from processing industries.
Storage Systems: Controlled and modified atmosphere storage; perishable food storage, godowns, bins and grain silos.

Section 7: Dairy and Food Engineering

Heat and Mass Transfer: Steady state heat transfer in conduction, convection and radiation; transient heat transfer in simple geometry; working principles of heat exchangers; diffusive and convective mass transfer; simultaneous heat and mass transfer in agricultural processing operations; material and energy balances in food processing systems; water activity, sorption and desorption isotherms.
Preservation of Food: Kinetics of microbial death – pasteurization and sterilization of milk and otherliquid foods; preservation of food by cooling and freezing; refrigeration and cold storage basics and applications.

GATE 2016 Aerospace Engineering (AE) Syllabus

GATE 2016 General Aptitude Syllabus - Common for ALL Papers

Important Note for Candidates: In each of the following subjects the topics have been divided into two categories – Core Topics and Special Topics. The corresponding sections of the question paper will contain 90% of their questions on Core Topics and the remaining 10% on Special Topics.

Section1: Engineering Mathematics

Core Topics: Linear Algebra: Vector algebra, Matrix algebra, systems of linear equations, rank of a matrix, eigenvalues and eigenvectors.
Calculus: Functions of single variable, limits, continuity and differentiability, mean value theorem, chain rule, partial derivatives, maxima and minima, gradient, divergence and curl, directional derivatives. Integration, Line, surface and volume integrals. Theorems of Stokes, Gauss and Green.
Differential Equations: First order linear and nonlinear differential equations, higher order linear ODEs with constant coefficients. Partial differential equations and separation of variables methods.
Special Topics: Fourier Series, Laplace Transforms, Numerical methods for linear and nonlinear algebraic equations, Numerical integration and differentiation.

Also Check: GATE 2016 Pattern of Question Paper and Marking Scheme

Section 2: Flight Mechanics

Core Topics: Basics: Atmosphere: Properties, standard atmosphere. Classification of aircraft. Airplane (fixed wing aircraft) configuration and various parts;
Airplane performance: Pressure altitude; equivalent, calibrated, indicated air speeds; Primary flight instruments: Altimeter, ASI, VSI, Turn-bank indicator. Drag polar; takeoff and landing; steady climb & descent, absolute and service ceiling; cruise, cruise climb, endurance or loiter; load factor, turning flight, V-n diagram; Winds: head, tail & cross winds;
Static stability: Angle of attack, sideslip; roll, pitch & yaw controls; longitudinal stick fixed & free stability, horizontal tail position and size; directional stability, vertical tail position and size; dihedral stability. Wing dihedral, sweep & position; hinge moments, stick forces;
Special Topics: Dynamic stability: Euler angles; Equations of motion; aerodynamic forces and moments, stability & control derivatives; decoupling of longitudinal and lateral-directional dynamics; longitudinal modes; lateral-directional modes.

Section 3: Space Dynamics

Core Topics: Central force motion, determination of trajectory and orbital period in simple cases.
Special Topics: Orbit transfer, in-plane and out-of-plane.

Section 4: Aerodynamics

Core Topics: Basic Fluid Mechanics: Conservation laws: Mass, momentum (Integral and differential form);
Potential flow theory: sources, sinks, doublets, line vortex and their superposition; Viscosity, Reynold's number.
Airfoils and wings: Airfoil nomenclature; Aerodynamic coefficients: lift, drag and moment; Kutta-Joukoswki theorem; Thin airfoil theory, Kutta condition, starting vortex;
Finite wing theory: Induced drag, Prandtl lifting line theory; Critical and drag divergence Mach number.
Compressible Flows: Basic concepts of compressibility, Conservation equations; One dimensional compressible flows, Fanno flow, Rayleigh flow; Isentropic flows, normal and oblique shocks, Prandtl-Meyer flow; Flow through nozzles and diffusers.
Special Topics: Elementary ideas of viscous flows including boundary layers; Wind Tunnel Testing: Measurement and visualization techniques.

Section 5: Structures

Core Topics:
Strength of Materials: States of stress and strain. Stress and strain transformation. Mohr's Circle. Principal stresses. Three-dimensional Hooke's law. Plane stress and strain; Failure theories: Maximum stress, Tresca and von Mises; Strain energy. Castigliano's principles. Analysis of statically determinate and indeterminate trusses and beams. Elastic flexural buckling of columns.
Flight vehicle structures: Characteristics of aircraft structures and materials. Torsion, bending and flexural shear of thin-walled sections. Loads on aircraft.
Structural Dynamics: Free and forced vibrations of undamped and damped SDOF systems. Free vibrations of undamped 2-DOF systems.
Special Topics: Vibration of beams. Theory of elasticity: Equilibrium and compatibility equations, Airy’s stress function.

Section 6: Propulsion

Core Topics: Basics: Thermodynamics, boundary layers and heat transfer and combustion thermochemistry.
Thermodynamics of aircraft engines: Thrust, efficiency and engine performance of turbojet, turboprop, turbo shaft, turbofan and ramjet engines, thrust augmentation of turbojets and turbofan engines. Aerothermodynamics of non-rotating propulsion components such as intakes, combustor and nozzle.
Axial compressors: Angular momentum, work and compression, characteristic performance of a single axial compressor stage, efficiency of the compressor and degree of reaction.
Axial turbines: Axial turbine stage efficiency
Centrifugal compressor: Centrifugal compressor stage dynamics, inducer, impeller and diffuser.
Rocket propulsion: Thrust equation and specific impulse, vehicle acceleration, drag, gravity losses, multi-staging of rockets. Classification of chemical rockets, performance of solid and liquid propellant rockets.
No Special Topics

GATE 2016 Petroleum Engineering (PE) Syllabus

GATE 2016 General Aptitude Syllabus - Common for ALL Papers

Linear Algebra: Matrix algebra, Systems of linear equations, Eigen values and eigenvectors.
Calculus: Functions of single variable, Limit, continuity and differentiability, Taylor series, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.
Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.
Complex variables: Complex number, polar form of complex number, triangle inequality.
Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions, Linear regression analysis.
Numerical Methods: Numerical solutions of linear and non-linear algebraic equations. Integration by trapezoidal and Simpson’s rule. Single and multi-step methods for numerical solution of differential equations.

Also Check: GATE 2016 Pattern of Question Paper and Marking Scheme

Petroleum Exploration: Classification and description of some common rocks with special reference to clastic and nonclastic reservoir rocks. Origin, migration and accumulation of Petroleum. Petroleum exploration methods.
Oil and Gas Well Drilling Technology: Well planning. Drilling method. Drilling rigs Rig operating systems. Drilling fluids function and properties. Drilling fluid maintenance equipment. Oil & gas well cementing operations. Drill bit types and their applications. Drill string & Casing string function, operations, selection & design. Drilling problems, their control & remedies. Directional drilling tools. Directional survey. Application of horizontal, multilateral, extended reach, slim wells.
Reservoir Engineering: Petrophysical properties of reservoir rocks. Coring and core analysis. Reservoir fluid properties. Phase behavior of hydrocarbon system. Flow of fluids through porous media. Water and gas coning. Reservoir pressure measurements. Reservoir drives, drive mechanics and recovery factors. Reserve estimation & techniques.
Petroleum Production Operations: Well equipments. Well completion techniques. Well production problems and mitigation. Well servicing & Workover operations. Workover & completion fluids. Formation damage. Well stimulation techniques. Artificial lift techniques. Field processing of oil & gas. Storage and transportation of petroleum and petroleum products. Metering and measurements oil & gas. Production system analysis & optimization. Production testing. Multiphase flow in tubing and flow-lines. Nodal system analysis. Pressure vessels, storage tanks, shell and tube heat exchangers, pumps and compressors, LNG value chain.
Offshore Drilling and Production Practices: Offshore oil and gas operations & ocean environment. Offshore fixed platforms, Offshore mobile units, Station keeping methods like mooring & dynamic positioning system. Offshore drilling from fixed platform, jack-up, ships and semi submersibles. Use of conductors and risers. Offshore well completion. Deep water applications of subsea technology. Offshore production: Oil processing platforms, water injection platforms, storage, SPM and SBM transportation and utilities. Deep water drilling rig. Deep water production system. Emerging deep water technologies.
Petroleum Formation Evaluation: Evaluation of petrophysical of sub-surface formations: Principles applications, advantages and disadvantages of SP, resistivity, radioactive, acoustic logs and types of tools used. Evaluation of CBL/VDL, USIT, SFT, RFT. Production logging tools, principles, limitations and applications. Special type of logging tools. Casing inspection tools (principles, applications and limitations), Formations micro scanner (FMS), NMR logging principles. Standard log interpretation methods. Cross-plotting methods.
Oil and Gas Well Testing: Diffusivity equation, derivation & solutions. Radius of investigation. Principle of superposition. Horner’s approximation. Drill Stem Testing. Pressure Transient Tests: Drawdown and build up-test analysis. Wellbore effects. Multilayer reservoirs. Injection well testing. Multiple well testing. Interference testing, Pulse testing, well-test analysis by use of type curves. Gas well testing.
Health Safety and Environment in Petroleum Industry: Health hazards in Petroleum Industry: Toxicity, Physiological, Asphyxiation, respiratory and skin effect of petroleum hydrocarbons, sour gases. Safety System: Manual & automatic shutdown system, blow down systems. Gas detection system. Fire detection and suppression systems. Personal protection system & measures. HSE Policies. Disaster & crisis management in Petroleum Industry. Environment: Environment concepts, impact on eco-system, air, water and soil. The impact of drilling & production operations on environment, Environmental transport of petroleum wastes. Offshore environmental studies. Offshore oil spill and oil spill control. Waste treatment methods.
Enhanced Oil Recovery Techniques: Basic principles and mechanism of EOR, Screening of EOR process. Concept of pattern flooding, recovery efficiency, permeability heterogeneity. Macroscopic and microscopic displacement efficiency. EOR methods: Chemical flooding, Miscible flooding, Thermal recoveries (steam stimulation, hot water & steam flooding, in-situ combustion), Microbial EOR.
Latest trends in Petroleum Engineering: Coal bed methane, shale gas, oil shale, gas hydrate, and heavy oil.